Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Parasit Vectors ; 17(1): 99, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429804

RESUMO

BACKGROUND: Soil-transmitted helminths (STH) infect more than a quarter of the world's human population. In the absence of vaccines for most animal and human gastrointestinal nematodes (GIN), treatment of infections primarily relies on anthelmintic drugs, while resistance is a growing threat. Therefore, there is a need to find alternatives to current anthelmintic drugs, especially those with novel modes of action. The present work aimed to study the composition and anthelmintic activity of Combretum mucronatum leaf extract (CMLE) by phytochemical analysis and larval migration inhibition assays, respectively. METHODS: Combretum mucronatum leaves were defatted with petroleum ether and the residue was extracted by ethanol/water (1/1) followed by freeze-drying. The proanthocyanidins and flavonoids were characterized by thin layer chromatography (TLC) and ultra-high performance liquid chromatography (UPLC). To evaluate the inhibitory activity of this extract, larval migration assays with STH and GIN were performed. For this purpose, infective larvae of the helminths were, if necessary, exsheathed (Ancylostoma caninum, GIN) and incubated with different concentrations of CMLE. RESULTS: CMLE was found to be rich in flavonoids and proanthocyanidins; catechin and epicatechin were therefore quantified for standardization of the extract. Data indicate that CMLE had a significant effect on larval migration. The effect was dose-dependent and higher concentrations (1000 µg/mL) exerted significantly higher larvicidal effect (P < 0.001) compared with the negative control (1% dimethyl sulfoxide, DMSO) and lower concentrations (≤ 100 µg/ml). Infective larvae of Ascaris suum [half-maximal inhibitory concentration (IC50) = 5.5 µg/mL], Trichuris suis (IC50 = 7.4 µg/mL), and A. caninum (IC50 = 18.9 µg/mL) were more sensitive to CMLE than that of Toxocara canis (IC50 = 310.0 µg/mL), while infective larvae of Toxocara cati were largely unaffected (IC50 > 1000 µg/mL). Likewise, CMLE was active against most infective larvae of soil-transmitted ruminant GIN, except for Cooperia punctata. Trichostrongylus colubriformis was most sensitive to CMLE (IC50 = 2.1 µg/mL) followed by Cooperia oncophora (IC50 = 27.6 µg/mL), Ostertagia ostertagi (IC50 = 48.5 µg/mL), Trichostrongylus axei (IC50 = 54.7 µg/mL), Haemonchus contortus (IC50 = 145.6 µg/mL), and Cooperia curticei (IC50 = 156.6 µg/mL). CONCLUSIONS: These results indicate that CMLE exhibits promising anthelmintic properties against infective larvae of a large variety of soil-transmitted nematodes.


Assuntos
Anti-Helmínticos , Combretum , Helmintos , Nematoides , Proantocianidinas , Trichostrongyloidea , Animais , Humanos , Combretum/química , Proantocianidinas/farmacologia , Proantocianidinas/química , Larva , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Helmínticos/farmacologia , Ruminantes , Flavonoides/farmacologia , Compostos Fitoquímicos/farmacologia
2.
Planta Med ; 89(13): 1215-1228, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37459860

RESUMO

The aerial parts of Phyllanthus urinaria are used in traditional medicine in West Africa against helminthiasis, but their anthelmintic potential has not been evaluated until now. Within the current study, a hydroacetonic extract (AWE) and fractions and isolated ellagitannins from P. urinaria were, therefore, tested in vitro against Caenorhabditis elegans and the larvae of the animal parasites Toxocara canis, Ascaris suum, Ancylostoma caninum, and Trichuris suis. Compounds 1:  - 13: , mainly representing ellagitannins, were isolated using different chromatographic methods, and their structures were elucidated by HR-MS and 1H/13C-NMR. AWE exerted concentration-dependent lethal effects (LC50 of 2.6 mg/mL) against C. elegans and inhibited larval migration of all animal parasites tested (T. suis L1 IC50 24.3 µg/mL, A. suum L3 IC50 35.7 µg/mL, A. caninum L3 IC50 112.8 µg/mL, T. canis L3 IC50 1513.2 µg/mL). The anthelmintic activity of AWE was mainly related to the polar, tannin-containing fractions. Geraniin 1: , the major ellagitannin in the extract, showed the strongest anthelmintic activity in general (IC50 between 0.6 and 804 µM, depending on parasite species) and was the only compound active against A. caninum (IC50 of 35.0 µM). Furosin 9: was least active despite structural similarities to 1: . Among the parasites tested, Trichuris suis L1 larvae turned out to be most sensitive with IC50 of 0.6, 6.4, 4.0, 4.8, and 2.6 µM for geraniin 1: , repandusinic acid A 3: , punicafolin 8: , furosin 9: , and phyllanthusiin A 10: , respectively.

3.
Parasite Immunol ; 45(5): e12978, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37073092

RESUMO

A sensitive and specific diagnostic kit is crucial for the detection of human lymphatic filariasis at the early stage of infection as the existing diagnostic tools are inefficient and expensive. In the present study, we have cloned and expressed Brugia malayi HSP70 (BmHSP70) protein and characterized it as a potential antigen for diagnosis of the asymptomatic microfilariae stage of Wuchereria. bancrofti infection using ELISA, western blot, and bioinformatics tools. The antigenic efficacy of BmHSP70 was also compared with ScHSP70. The BmHSP70 and ScHSP70 peptide showed highly antigenic in nature and they showed immunogenic cross-reactivity endemic normal (EN) < chronic (CH) < microfilaraemic (MF) in IgG, IgG1, and IgG4 ELISA. IgG4-specific immunoblotting of BmHSP70 with MF sera further explicated its stage-specific antigenic cross-reactivity. These antigens (ScHSP70 and BmHSP70) showed a positive immunogenic correlation with the number of MF in blood samples. Thus, proposing BmHSP70 as a potential immunodiagnostic antigen against lymphatic filariasis. A triplet of GGMP tetrapeptide specific to the filarial HSP70 was also identified which was absent in human HSP70. In terms of sensitivity and specificity of antigens, these results suggest that recombinant BmHSP70 is a good antigen and could be used to diagnose early-stage of microfilariae infection.


Assuntos
Brugia Malayi , Filariose Linfática , Animais , Humanos , Filariose Linfática/diagnóstico , Wuchereria bancrofti , Antígenos de Helmintos , Microfilárias , Imunoglobulina G , Proteínas de Choque Térmico HSP70 , Anticorpos Anti-Helmínticos , Imunidade
4.
Sci Rep ; 12(1): 18850, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344622

RESUMO

Tannins and tanniferous plant extracts have been discussed as sustainable means for helminth control in the past two decades in response to a dramatic increase of resistances towards standard anthelmintics. While their bioactivities have been broadly investigated in vitro and in vivo, less is known about their mode of action in nematodes, apart from their protein binding properties. In the current study we therefore investigated the impact of a phytochemically well characterized plant extract from Combretum mucronatum, known to contain procyanidins as the active compounds, on the model organism Caenorhabditis elegans. By different microscopic techniques, the cuticle was identified as the main binding site for tannins, whereas underlying tissues did not seem to be affected. In addition to disruptions of the cuticle structure, molting defects occurred at all larval stages. Finally, an increased rigidity of the nematodes' cuticle due to binding of tannins was confirmed by force spectroscopic measurements. This could be a key finding to explain several anthelmintic activities reported for tannins, especially impairment of molting or exsheathment as well as locomotion.


Assuntos
Anti-Helmínticos , Proantocianidinas , Animais , Proantocianidinas/farmacologia , Proantocianidinas/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Taninos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Caenorhabditis elegans , Larva
5.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 6): 232-240, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35647680

RESUMO

Superoxide dismutases (SODs) are metalloproteins that are responsible for the dismutation of superoxide anion radicals. SODs are consequently protective against oxidative damage to cellular components. Among other protective mechanisms, the filarial parasite Onchocerca volvulus has a well developed defense system to scavenge toxic free radicals using SODs during migration and sojourning of the microfilariae and adult worms in the human body. O. volvulus is responsible for the neglected disease onchocerciasis or `river blindness'. In the present study, an extracellular Cu/Zn-SOD from O. volvulus (OvEC-SOD) was cloned, purified and crystallized to obtain structural insight into an attractive drug target with the potential to combat onchocerciasis. The recombinant OvEC-SOD forms a dimer and the protein structure was solved and refined to 1.55 Šresolution by X-ray crystallography. Interestingly, a sulfate ion supports the coordination of the conserved copper ion. The overall protein shape was verified by small-angle X-ray scattering. The enzyme shows a different surface charge distribution and different termini when compared with the homologous human SOD. A distinct hydrophobic cleft to which both protomers of the dimer contribute was utilized for a docking approach with compounds that have previously been identified as SOD inhibitors to highlight the potential for individual structure-based drug development.


Assuntos
Volvo Intestinal , Onchocerca volvulus , Oncocercose , Parasitos , Animais , Cristalografia por Raios X , Desenvolvimento de Medicamentos , Onchocerca volvulus/genética , Onchocerca volvulus/metabolismo , Parasitos/metabolismo , Superóxido Dismutase/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-36624864

RESUMO

Soil-transmitted helminthiasis affects more than 1.5 billion people globally and largely remains a sanitary problem in Africa. These infections place a huge economic burden on poor countries and affect livestock production, causing substantial economic losses and poor animal health. The emergence of anthelmintic resistance, especially in livestock, and the potential for its widespread in humans create a need for the development of alternative therapies. Medicinal plants play a significant role in the management of parasitic diseases in humans and livestock, especially in Africa. This report reviews anthelmintic studies that have been conducted on medicinal plants growing in Africa and published within the past two decades. A search was made in various electronic databases, and only full articles in English were included in the review. Reports show that aqueous and hydroalcoholic extracts and polar fractions obtained from these crude extracts form the predominant (80%) form of the extracts studied. Medicinal plants, extracts, and compounds with different chemical groups have been studied for their anthelmintic potential. Polyphenols and terpenoids are the most reported groups. More than 64% of the studies employed in vitro assays against parasitic and nonparasitic nematode models. Egg hatch inhibition, larval migration inhibition, and paralysis are the common parameters assessed in vitro. About 72% of in vivo models involved small ruminants, 15% rodents, and 5% chicken. Egg and worm burden are the main factors assessed in vivo. There were no reports on interventions in humans cited within the period under consideration. Also, few reports have investigated the potential of combining plant extracts with common anthelmintic drugs. This review reveals the huge potential of African medicinal plants as sources of anthelmintic agents and the dire need for in-depth clinical studies of extracts, fractions, and compounds from African plants as anthelmintic agents in livestock, companion animals, and humans.

7.
Acta Trop ; 225: 106176, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34627755

RESUMO

The expression of antigens in their immunologically-active form remains a challenge, both in the analysis of regulatory pathways exploited by parasitic nematodes or in the development of vaccines. Despite the success of native proteins to induce protective immunity, recombinant proteins expressed in bacteria, yeast or insect cells offer only limited protective capacities, presumably due to incorrect folding or missing complex posttranslational modifications. The present study investigates the feasibility of using the free-living nematode Caenorhabditis elegans as an alternative expression system for proteins found in the secretome of parasitic nematodes. Exemplified by the expression of the extracellular superoxide dismutase from Haemonchus contortus (HcSODe) and the extracellular and glycosylated glutathione S-transferase from the filarial parasite Onchocerca volvulus (OvGST1), we continue our efforts to improve production and purification of recombinant proteins expressed in C. elegans. We demonstrate that sufficient quantities of functional proteins can be expressed in C. elegans for subsequent immunological and biochemical studies.


Assuntos
Haemonchus , Nematoides , Onchocerca volvulus , Animais , Caenorhabditis elegans/genética , Haemonchus/genética , Proteínas Recombinantes/genética
8.
Molecules ; 26(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885936

RESUMO

In continuation of the search for new anthelmintic natural products, the study at hand investigated the nematicidal effects of the two naturally occurring quassinoids ailanthone and bruceine A against the reproductive system of the model nematode Caenorhabditis elegans to pinpoint their anthelmintic mode of action by the application of various microscopic techniques. Differential Interference Contrast (DIC) and the epifluorescence microscopy experiments used in the presented study indicated the genotoxic effects of the tested quassinoids (c ailanthone = 50 µM, c bruceine A = 100 µM) against the nuclei of the investigated gonadal and spermathecal tissues, leaving other morphological key features such as enterocytes or body wall muscle cells unimpaired. In order to gain nanoscopic insight into the morphology of the gonads as well as the considerably smaller spermathecae of C. elegans, an innovative protocol of polyethylene glycol embedding, ultra-sectioning, acridine orange staining, tissue identification by epifluorescence, and subsequent AFM-based ultrastructural data acquisition was applied. This sequence allowed the facile and fast assessment of the impact of quassinoid treatment not only on the gonadal but also on the considerably smaller spermathecal tissues of C. elegans. These first-time ultrastructural investigations on C. elegans gonads and spermathecae by AFM led to the identification of specific quassinoid-induced alterations to the nuclei of the reproductive tissues (e.g., highly condensed chromatin, impaired nuclear membrane morphology, as well as altered nucleolus morphology), altogether implying an apoptosis-like effect of ailanthone and bruceine A on the reproductive tissues of C. elegans.


Assuntos
Anti-Helmínticos/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Quassinas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Caenorhabditis elegans/citologia , Gônadas/efeitos dos fármacos , Infertilidade/induzido quimicamente , Masculino
9.
J Struct Biol ; 213(4): 107796, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34508858

RESUMO

Ubiquitin fold modifier 1 (UFM1) is an ubiquitin-like protein (Ubl) involved especially in endoplasmic stress response. Activation occurs via a three-step mechanism like other Ubls. Data obtained reveal that UFM1 regulates the oligomeric state of ubiquitin activating enzyme 5 (UBA5) to initiate the activation step. Mixtures of homodimers and heterotrimers are observed in solution at the equilibrium state, demonstrating that the UBA5-UFM1 complex undergoes several concentration dependent oligomeric translational states to form a final functional complex. The oligomerization state of unbound UBA5 is also concentration dependent and shifts from the monomeric to the dimeric state. Data describing different oligomeric states are complemented with binding studies that reveal a negative cooperativity for the complex formation and thereby provide more detailed insights into the complex formation mechanism.


Assuntos
Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Conformação Proteica , Multimerização Proteica , Proteínas/química , Enzimas Ativadoras de Ubiquitina/química , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Difração de Raios X
10.
Neuropediatrics ; 52(6): 489-494, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33853163

RESUMO

The enzyme ubiquitin-like modifier activating enzyme 5 (UBA5) plays an important role in activating ubiquitin-fold modifier 1 (UFM1) and its associated cascade. UFM1 is widely expressed and known to facilitate the post-translational modification of proteins. Variants in UBA5 and UFM1 are involved in neurodevelopmental disorders with early-onset epileptic encephalopathy as a frequently seen disease manifestation. Using whole exome sequencing, we detected a homozygous UBA5 variant (c.895C > T p. [Pro299Ser]) in a patient with severe global developmental delay and epilepsy, the latter from the age of 4 years. Magnetic resonance imaging showed hypomyelination with atrophy and T2 hyperintensity of the thalamus. Histology of the sural nerve showed axonal neuropathy with decreased myelin. Functional analyses confirmed the effect of the Pro299Ser variant on UBA5 protein function, showing 58% residual protein activity. Our findings indicate that the epilepsy currently associated with UBA5 variants may present later in life than previously thought, and that radiological signs include hypomyelination and thalamic involvement. The data also reinforce recently reported associations between UBA5 variants and peripheral neuropathy.


Assuntos
Epilepsia , Doenças do Sistema Nervoso Periférico , Pré-Escolar , Homozigoto , Humanos , Tálamo/diagnóstico por imagem , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo
12.
BMC Microbiol ; 21(1): 5, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407120

RESUMO

BACKGROUND: During the last two decades research on animal filarial parasites, especially Onchocerca ochengi, infecting cattle in savanna areas of Africa revealed that O. ochengi as an animal model has biological features that are similar to those of O. volvulus, the aetiological agent of human onchocerciasis. There is, however, a paucity of biochemical, immunological and pathological data for O. ochengi. Galectins can be generated by parasites and their hosts. They are multifunctional molecules affecting the interaction between filarial parasites and their mammalian hosts including immune responses. This study characterized O. ochengi galectin, verified its immunologenicity and established its immune reactivity and that of Onchocerca volvulus galectin. RESULTS: The phylogenetic analysis showed the high degree of identity between the identified O. ochengi and the O. volvulus galectin-1 (ß-galactoside-binding protein-1) consisting only in one exchange of alanine for serine. O. ochengi galectin induced IgG antibodies during 28 days after immunization of Wistar rats. IgG from O. ochengi-infected cattle and O. volvulus-infected humans cross-reacted with the corresponding galectins. Under the applied experimental conditions in a cell proliferation test, O. ochengi galectin failed to significantly stimulate peripheral blood mononuclear cells (PBMCs) from O. ochengi-infected cattle, regardless of their parasite load. CONCLUSION: An O. ochengi galectin gene was identified and the recombinantly expressed protein was immunogenic. IgG from Onchocerca-infected humans and cattle showed similar cross-reaction with both respective galectins. The present findings reflect the phylogenetic relationship between the two parasites and endorse the appropriateness of the cattle O. ochengi model for O. volvulus infection research.


Assuntos
Galectinas/administração & dosagem , Galectinas/genética , Imunoglobulina G/sangue , Leucócitos Mononucleares/imunologia , Onchocerca/imunologia , Animais , Bovinos , Clonagem Molecular/métodos , Feminino , Galectinas/imunologia , Perfilação da Expressão Gênica , Proteínas de Helminto/administração & dosagem , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Humanos , Imunização , Leucócitos Mononucleares/parasitologia , Onchocerca/genética , Filogenia , Ratos , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Análise de Sequência de DNA
13.
J Venom Anim Toxins Incl Trop Dis ; 26: e20200032, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32788917

RESUMO

BACKGROUND: Liposomes are highly useful carriers for delivering drugs or antigens. The association of glycosylphosphatidylinositol (GPI)-anchored proteins to liposomes potentially enhances the immunogenic effect of vaccine antigens by increasing their surface concentration. Furthermore, the introduction of a universal immunoglobulin-binding domain can make liposomes targetable to virtually any desired receptor for which antibodies exist. METHODS: We developed a system for the production of recombinant proteins with GPI anchors and histidine tags and Strep-tags for simplified purification from cells. This system was applied to i) the green fluorescent protein (GFP) as a reporter, ii) the promising Plasmodium falciparum vaccine antigen PfRH5 and iii) a doubled immunoglobulin Fc-binding domain termed ZZ from protein A of Staphylococcus aureus. As the GPI-attachment domain, the C-terminus of murine CD14 was used. After the recovery of these three recombinant proteins from Chinese hamster ovary (CHO) cells and association with liposomes, their vaccine potential and ability to target the CD4 receptor on lymphocytes in ex vivo conditions were tested. RESULTS: Upon immunization in mice, the PfRH5-GPI-loaded liposomes generated antibody titers of 103 to 104, and showed a 45% inhibitory effect on in vitro growth at an IgG concentration of 600 µg/mL in P. falciparum cultures. Using GPI-anchored ZZ to couple anti-CD4 antibodies to liposomes, we created immunoliposomes with a binding efficiency of 75% to CD4+ cells in splenocytes and minimal off-target binding. CONCLUSIONS: Proteins are very effectively associated with liposomes via a GPI-anchor to form proteoliposome particles and these are useful for a variety of applications including vaccines and antibody-mediated targeting of liposomes. Importantly, the CHO-cell and GPI-tagged produced PfRH5 elicited invasion-blocking antibodies qualitatively comparable to other approaches.

15.
J. venom. anim. toxins incl. trop. dis ; 26: e20200032, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135160

RESUMO

Liposomes are highly useful carriers for delivering drugs or antigens. The association of glycosylphosphatidylinositol (GPI)-anchored proteins to liposomes potentially enhances the immunogenic effect of vaccine antigens by increasing their surface concentration. Furthermore, the introduction of a universal immunoglobulin-binding domain can make liposomes targetable to virtually any desired receptor for which antibodies exist. Methods: We developed a system for the production of recombinant proteins with GPI anchors and histidine tags and Strep-tags for simplified purification from cells. This system was applied to i) the green fluorescent protein (GFP) as a reporter, ii) the promising Plasmodium falciparum vaccine antigen PfRH5 and iii) a doubled immunoglobulin Fc-binding domain termed ZZ from protein A of Staphylococcus aureus. As the GPI-attachment domain, the C-terminus of murine CD14 was used. After the recovery of these three recombinant proteins from Chinese hamster ovary (CHO) cells and association with liposomes, their vaccine potential and ability to target the CD4 receptor on lymphocytes in ex vivo conditions were tested. Results: Upon immunization in mice, the PfRH5-GPI-loaded liposomes generated antibody titers of 103 to 104, and showed a 45% inhibitory effect on in vitro growth at an IgG concentration of 600 µg/mL in P. falciparum cultures. Using GPI-anchored ZZ to couple anti-CD4 antibodies to liposomes, we created immunoliposomes with a binding efficiency of 75% to CD4+ cells in splenocytes and minimal off-target binding. Conclusions: Proteins are very effectively associated with liposomes via a GPI-anchor to form proteoliposome particles and these are useful for a variety of applications including vaccines and antibody-mediated targeting of liposomes. Importantly, the CHO-cell and GPI-tagged produced PfRH5 elicited invasion-blocking antibodies qualitatively comparable to other approaches.(AU)


Assuntos
Plasmodium falciparum , Vacinas , Glicosilfosfatidilinositóis , Lipossomos , Antígenos
16.
Nanomedicine ; 22: 102099, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31648039

RESUMO

Lipid particles for drug delivery can be modified to create multilayer vesicles with higher stability and improved cargo interaction. Here, we used lipids capable of forming hydrogen bonds instead of covalent bonds and designed stable vesicles-inside-vesicles with a high capacity of entrapping antimalarial drugs such as chloroquine (hydrophilic) and Artemisinin (lipophilic). In vitro treatment of the drug-sensitive P. falciparum strain NF54 showed that encapsulated drugs resulted in 72% and 60% lower IC50 values for each drug, respectively. Fluorochrome-labeling of a cargo-peptide or of membrane-resident lipids indicated that vesicles interacted more specifically with parasite-infected erythrocytes than with normal red blood cells. Accordingly, vesicle-confined chloroquine was able to elicit a stronger antiparasitic effect than free chloroquine in a lethal murine model of infection. Being permissive not only to small molecules but also to larger peptides, hydrogen-bond linked multilamellar liposomes are a very promising approach for enhanced drug delivery.


Assuntos
Antimaláricos/farmacologia , Nanopartículas/química , Animais , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Cloroquina/farmacologia , Reagentes de Ligações Cruzadas/química , Sistemas de Liberação de Medicamentos , Ligação de Hidrogênio , Lipossomos , Malária Falciparum/tratamento farmacológico , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Tamanho da Partícula , Plasmodium falciparum/efeitos dos fármacos , Resultado do Tratamento
17.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308081

RESUMO

The nosocomial pathogen Pseudomonas aeruginosa regulates its virulence via a complex quorum sensing network, which, besides N-acylhomoserine lactones, includes the alkylquinolone signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone signal [PQS]) and 2-heptyl-4(1H)-quinolone (HHQ). Mycobacteroides abscessus subsp. abscessus, an emerging pathogen, is capable of degrading the PQS and also HHQ. Here, we show that although M. abscessus subsp. abscessus reduced PQS levels in coculture with P. aeruginosa PAO1, this did not suffice for quenching the production of the virulence factors pyocyanin, pyoverdine, and rhamnolipids. However, the levels of these virulence factors were reduced in cocultures of P. aeruginosa PAO1 with recombinant M. abscessus subsp. massiliense overexpressing the PQS dioxygenase gene aqdC of M. abscessus subsp. abscessus, corroborating the potential of AqdC as a quorum quenching enzyme. When added extracellularly to P. aeruginosa cultures, AqdC quenched alkylquinolone and pyocyanin production but induced an increase in elastase levels. When supplementing P. aeruginosa cultures with QsdA, an enzyme from Rhodococcus erythropolis which inactivates N-acylhomoserine lactone signals, rhamnolipid and elastase levels were quenched, but HHQ and pyocyanin synthesis was promoted. Thus, single quorum quenching enzymes, targeting individual circuits within a complex quorum sensing network, may also elicit undesirable regulatory effects. Supernatants of P. aeruginosa cultures grown in the presence of AqdC, QsdA, or both enzymes were less cytotoxic to human epithelial lung cells than supernatants of untreated cultures. Furthermore, the combination of both aqdC and qsdA in P. aeruginosa resulted in a decline of Caenorhabditis elegans mortality under P. aeruginosa exposure.


Assuntos
Hidrolases de Éster Carboxílico/genética , Dioxigenases/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium abscessus/genética , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/genética , Células A549 , Animais , Antibiose/genética , Caenorhabditis elegans/microbiologia , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Dioxigenases/metabolismo , Dioxigenases/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Mycobacterium abscessus/enzimologia , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/genética , Piocianina/metabolismo , Quinolonas/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
18.
Parasitol Res ; 117(9): 2697-2713, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30008135

RESUMO

Onchocerciasis is a filarial vector borne disease which affects several million people mostly in Africa. The therapeutic approach of its control was based on a succession of drugs which always showed limits. The last one: ivermectin is not the least. It was shown to be only microfilaricidal and induced resistance to the human parasite Onchocerca volvulus. The approach using medicinal plants used in traditional medicine is a possible alternative method to cure onchocerciasis. Onchocerca ochengi and Onchocerca gutturosa are the parasite models used to assess anthelmintic activity of potentially anthelmintic plants. Numerous studies assessed the in vitro and/or in vivo anthelmintic activity of medicinal plants. Online electronic databases were consulted to gather publications on in vitro and in vivo studies of anti-Onchocerca activity of plants from 1990 to 2017. Globally, 13 plant families were investigated for anti-Onchocerca activity in 13 studies. The most active species were Anacardium occidentale, Euphorbia hirta and Acacia nilotica each with an LC50 value of 2.76, 6.25 and 1.2 µg/mL, respectively. Polycarpol, voacamine, voacangine, ellagic acid, gallic acid, gentisic acid, 3-O-acetyl aleuritolic acid and (-)-epigallocatechin 3-O-gallate were the isolated plant compounds with anti-Onchocerca activity. Most of the assessed extract/compounds showed a good safety after in vivo acute toxicity assays and/or in vitro cytotoxicity test. The exception was the ethanol extract of Trichilia emetica, which killed completely and drastically mice at a dose of 3000 mg/kg. Several plant groups of compounds were shown active against Onchocerca sp. such as tannins, alkaloids, triterpenoids and essential oils. Nevertheless, none of the active compounds was subjected to clinical trial, to assessment of its diffusibility through nodular wall or its capability to induce genetic resistance of Onchocerca sp.


Assuntos
Anti-Helmínticos/farmacologia , Onchocerca volvulus/efeitos dos fármacos , Oncocercose/tratamento farmacológico , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Acacia/química , África , Anacardium/química , Animais , Euphorbia/química , Humanos , Ivermectina/farmacologia , Onchocerca volvulus/isolamento & purificação , Oncocercose/parasitologia , Taninos/análise
19.
Trends Parasitol ; 34(10): 828-842, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29954660

RESUMO

The dramatic rise in immunological disorders that occurs with socioeconomic development is associated with alterations in microbial colonization and reduced exposure to helminths. Excretory-secretory (E/S) helminth products contain a mixture of proteins and low-molecular-weight molecules representing the primary interface between parasite and host. Research has shown great pharmacopeic potential for helminth-derived products in animal disease models and even in clinical trials. Although in its infancy, the translation of worm-derived products into therapeutics is highly promising. Here, we focus on important key aspects in the development of immunomodulatory drugs, also highlighting novel approaches that hold great promise for future development of innovative research strategies.


Assuntos
Descoberta de Drogas/tendências , Helmintos/química , Fatores Imunológicos/imunologia , Animais , Antígenos de Helmintos/imunologia , Antígenos de Helmintos/farmacologia , Modelos Animais de Doenças , Sistema Imunitário/efeitos dos fármacos , Fatores Imunológicos/química , Fatores Imunológicos/normas
20.
BMC Infect Dis ; 18(1): 200, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29716541

RESUMO

BACKGROUND: The front line molecules from filarial worms and other nematodes or helminthes are their Excretory-Secretory (ES) products. Their interaction with the host cells, proteins and immune system accounts for the skin and eye pathology or hyposensitivity observed in human onchocerciasis. ES products and adult worms' crude extracts from Onchocerca ochengi, a filarial nematode that infects the African zebu cattle, were utilized in the present study as a model for studying Onchocerca volvulus that causes river blindness in man. METHODS: The ES products were generated from adult male and female worms in vitro and analyzed with poly acrylamide gel electrophoresis (PAGE) and enzyme-linked immunosorbent assay (ELISA) using sera from Onchocerca-infected cattle and humans. The cattle sera were collected from a herd that had been exposed for six years to natural transmission of Onchocerca spp. The expressed reactivity was evaluated and differences analyzed statistically using Kruskal-Wallis rank and Chi-square tests. RESULTS: The gel electrophoretic analyses of 156 ES products from O. ochengi female and male worms and of two somatic extracts from three females and 25 males revealed differences in the protein pattern showing pronounced bands at 15, 30-50 and 75 kDa for male ES proteins and 15, 25 and 40-75 kDa for somatic extracts, respectively and less than 100 kDa for female worms. Proteins in the ES products and somatic extracts from female and male Onchocerca ochengi worms were recognized by IgG in sera from both Onchocerca-exposed cattle and humans. Bovine serum antibodies reacted more strongly with proteins in the somatic extracts than with those in the ES products. Interestingly, the reaction was higher with male ES products than with ES products from female worms, suggesting that the males which migrate from one nodule to another are more exposed to the host immune system than the females which remain encapsulated in intradermal nodules. CONCLUSIONS: This study demonstrates that O. ochengi ES products and, in particular, extracts from male filariae may represent a good source of immunogenic proteins and potential vaccine candidates.


Assuntos
Proteínas de Helminto/imunologia , Interações Hospedeiro-Parasita/imunologia , Onchocerca/patogenicidade , Oncocercose/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Anticorpos Anti-Helmínticos/imunologia , Bovinos , Doenças dos Bovinos/parasitologia , Ensaio de Imunoadsorção Enzimática , Feminino , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Humanos , Imunoglobulina G/análise , Masculino , Onchocerca/imunologia , Onchocerca volvulus/imunologia , Onchocerca volvulus/patogenicidade , Oncocercose/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...